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ORIGINOFHIGH-INTENSITYNOISEINTHEAREAOFA

LARGEPROTUBERANCEONA LAUNCHVEHICLE

byMichaelL NachtandRaymondA. Turk

LewisResearchCenter C_bC_

SUMMARY _, 1

A 1/10-scale Atlas-Agena-Ma/-hler C was tested in the Lewis 10- by 10-foot wind

_el o zer a Mach number range of 2.0 to 2.5 at an angle of aff_ck of 0°. Attention was

centered on the fluctuating pressure activity in the area of an equipment pod. Power-

i spectral-density analyses failed to reveal distinct power spectra levels at model frequen-

cies corresponding to full-scale frequencies where significant power concentrations had

been observed. This indicates the possibility that these large flight vibratory levels may

; be caused by pressure fluctuations that excite vehicle structures at their natural reso-

nant frequencies. Root-mean-square fluctuating pressure studies revealed that flow sep-

aration and shock - boundary-layer interaction may contribute significantly to the general

level of pressure fluctuations on launch vehicles.

INTRODUCTION

High-intensity vibrational effects experienced by launch vehicles have emerged as a

signi_cant problem area in recent space missions. Examination of data from recent

Atlas flights (ref. 1) reveals that considerable vibration activity was imposed on launch

vehicle gui_uce equipment in an external pod over a Mach number range of 2.0 to 2.5.

Furthermore, I_wer-spectral-density analyses of flight acceleration measurements in-

dicate relatively hi_;h power concentrations at distinct response frequencies. Reference 1

indicates that specific _ower-spectral-density peaks were observed at 600 and 900 cps

with a 50 cps bandwidth re_olution. The present wind tunnel program was conducted to

ascertain if these disturbances had an aerodynamic origin and to determine boundary-

layer effects on the frequency and _mplitude of the resulting measured pressure fluctu-
ations.

A 1/10-scale Atlas-Agena_Mariner C was tested in the Lewis I0- by 10-foot super-
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sonic wind tunnel with Mach number, dynamic pressure, and altitude as the primary test

variables. Both the original model and a configuration with a redesigned pod were inves-

tigated. Dynamic pressure transducers were used to measure pressure fluctuations in

the pod area. From the transducer data, root-mean-square differential-pressure-

coefficient values and power-spectral-density variations were obtained for the areas of

greatest activity. In addition, the effect of boundary layer on pressure fluctuations was
examined.

SYMBOLS

ACp(rms) root-mean-square differential pressure coefficient

D characteristic dimension

f frequency, cps

M0 Mach ntunber

Re Reynolds number

u/U0 boundary-layervelocityratio

V velocity,ft/sec

}'/5 boundary-layerdistanceratio

_o power spectral density, (lb/sq fl)2/cps

5/X boundary-layer thickness ratio

Subscripts:

fs full scale

m model

APPARATUSAND PROCEDURE

Testing was conducted at free-stream Mach 2.0 to 2.5 and at an angle of attack of

0°. Dynamic pressures decreased from 530 pounds per square foot at Much 2.0 to

490 pounds per square foot at Mach 2.5, while the Reynolds number per foot remained

constant at 2.5_x106. Similitude of wind tunnel altitude with flight trajectory was main-

tained within 12 000 feet over the range of Mach numbers tested.

Figure 1 shows the full-length model installed in the 10- by 10-foot supersonic wind

2

1966022060-005



. .....VII
J

L

F

f .
1L

c-6g_
Figure 1. - Full-length modelinstalled in 10- b] lO-foot supersonic wind tunnel.

tunnel. The Atlas-Agena-Mariner C configuration was sting mounted in the tunnel. Ad-

ditional configurations, which will be described herein, were also mounted in this manner.

Frequently, wind tunnel models are characterized by boundary-layer thicknesses in

excess of values dictated by their corresponding full-scale vehicles. In order to study

boundary-layer effects on pressure fluctuations, a 1/10-scale Atlas short-nose configura-

tion was tested along with the 1/10-scale Atlas-
Equipmentix_-7

. . .........,_ Agena-Mariner C. A schematic drawing of the

[[ t i._ _ full-length and shortened models appears in fig-ure 2. The shortened model measured 53.0 inches

9o.oi.. "' _J in length from the modeI tip to the start of the_ l_. t in. -1 equipment pod compared with 90.0 inches for the

(a)FulHengthmodelAofAtlas-/kjena-MarinerC. full-length model. The shortened model correc, iF

simulated fiat-plate theory estimates of the

Equipment_, boundary-layer-thickness characteristics of the

: __. _ '_ | full-scale vehicle at the equlpment pod.

: __ Modifications of the original pod included the

I 0 ia reduction of the pod wedge half-angle from 26 ° to

_. 1la -1 15 ° and the extension of the pod length from 16.39
to 19.86 inches. These alterations of length and

' t (b)Shortenedmodelofshort-noseAtlas.

'_ Figure2,-Schematicoffull-lengthandshortenedmodels, wedge angle are illustrated in figure 3, which

.! Scal_111o. shows the forward segments of the original and

3
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Figure4. - Originalequipmentpodwithinstalledpressuretransducers.
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redesigned pods. Both pods were extensively instrumented. Figure 4 shows the original

equipment pod with installed pressure transducers. Details of the transducer locations

in the pod area for the original and redesigned pods are presented in figure 5. A total

of 15 high-frequency pressure transducers were installed on and adjacent to the pod so

that the effect of flow disturbances on the pod area could be studied. Transducers 13

and 16 were relocated to positions 13-A and 16-A when the redesigned pod replaced the

original.

Figure 6 is a block diagram of the dynamic pressure data measurement system. Be-

cause of the long cable lengths that are necessary for testing, a low-noise c,:,a_xial cable

was used to maintain a high signal-to-noise ratio. The pressure transducer.-_ had a range

that extended from 0 to 3000 pounds per square inch with a rating of 1 percent linearity.

They could tolerate temperatures from -400 ° to 500° F and were acceleration sensitive

to 0.01 pound per square inch per g. The small size of this transducer (0. 218-in. diam)

was advantageous because it permitted the flush mounting that was necessary for high

frequency response. It should be noted further that the data recording equipment had a

frequency response from 0 to 20 kcps with an accuracy of _-0. 5 decibel.

The dynamic-pressure data reduction system is indicated by a block diagram in

figure 7. The root-mean-square voltmeter had a freqdency range of 10 cps to 10 Mcps.

It had an accuracy rating of +5 percent from 10 to 50 cps and _1 percent from 50 cps to

10 Mcps. The power-spectral-density analyzer displayed and plotted, on its associated

recorder, the relative total voltage or power as a function of frequency characteristics

of a selected spectrum segment. The data reduction equipment for power-spectral-

density analysis had a freq,,ency range of 5 cps to 22.5 kcps with an amplitude accuracy

of _:7 percent. The bandwidth resolution used/or this analysis was 50 cps.

RESULTSANDDISCUSSION

Before the power-spectral-density measurements are discussed, it is pertinent to

evaluate the boundary-layer characteristics in the pod area. The boundary-layer thick-

ness variation for the tested configuration is presented as a function of Mach number in

figure 8. Boundary-layer thickness divided by pod height is plotted against Mach number

for the 1/10-scale Atlas-Agena-Mariner C, the 1/10-scale Atlas short-nose configura-

tion, and the full-scale Atlas-Agena-Mariner C. The original pod was used for both

model configurations in figure 8. The figure indicates that the 1/10-scale Atlas-Agena-

Mariner C configuration experienced a boundary layer that completely immersed the

equipment pod at all Mach numbers tested. In contrast, the boundary-layer thickness of

the short-nose configuration barely exceeded half the pod height for Mach 2.0 to 2.5.

The short-nose boundary-layer thickness was in close agreement with results calculated
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Figure5. - Transduceriec_onsinpodareafororiginalandredesignedpods.
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Figure6, - Dynamic_)ressuredatameasurementsystem.
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(b) Power-spectral-densityanalysis.

Figure7. - Dynamicpressuredatareductionsystem.
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Figure8 - Boundary-layerthicknessvariationfor tested
configurations.
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Figure9. Comparisonof boundaryiayerprofilesfor testedconfigurations

from full-scale flight conditions and fiat-plate turbulent flow theory described by

6_= 0.376 Re -1"5/
X

Another configuration-dependent characteristic was boundary-layer profile. 'l_.e

boundary-layer profilesfor the full-lengthand shortened models were plottedin figure9

in the conventionalform of the ratioof distance to thickness y/5 as a functionof

boundary-layer velocityratio u/U 0. The Reynolds number thatcorresponded to the pro-
fileof the fuU-lengthmodel was 19.6><106,while the corresponding Reynolds number for

the shortened model was 11.8)<106. Comparisons were made at Mach 2.0 and 2.5, and

the theoreticalseventh-power profileof turbulentflow was includedat both conditions.

R was observed thatthe boundary-layer profileof the shortened model was considerably

flatterthan eitherthe full-lengthmodel profileor the theoreticalprofile. R should be

noted thatfigure8 illustratesthatthe shortened model was introduced to simulate more

closelyfull-scaleboundarv-layer-thickness characteristics. Figure 9, however, indi-

cates thata modified boundary-layer profilealso resulted.

The variationof root-mean-square fluctuatingpressures in the equipment pod area

(over the entirefrequency range) is presented in figure10 as a functionof Mach number.

8
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Figure10. - Fluctuatingpressuresin podarea.

Control-room monitoring equipment indicated that transducers 14 to 18 (see fig. 5, p. 6)

were the most active of the transducers installed in the pod area. Transducer 15, located

on the side of the forward segment of both the original and redesigned pods, showed the

greatest activity. In order to determine true values of fluctuating pressures, it was nec-

essary to recognize the contribution made by electrical noise with the tunnel down. This

was achieved by the simple relation

_Cp(rms)J = _IACp(rms)12wind on - _Cp(r,ns)12tunnel down

A number of trends were indicat_<l by the transducer data. The values of ACp(rms)
i ranged from 0.0038 to 0. 0235 with most of them between 0. 004 and 0. 012. There was a

relatively slight variation of ACp(rms) levels over the Mach range investigated for each
of the three configurations examined. The use of a short nose in place of the Agena-

9
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Mariner C reduced the fluctuating pressures considerably (by as much as 40 percent for

I transducer 15). It is felt that reduction of shock - boundary-layer interaction because of
modifications of the boundary-layer profile and thickness may have caused these lower

'. fluctuating pressure levels. The redesigned pod tested with the short r.ose indicated a

further substantial decrease in fluctuating pressure activity compared with the short-

nose - original pod combination (70 percent reduction at Mach 2.0 for transducer 15).

The original pod was characterized by a detached oblique shock wave at the forvlard tip,

•r which caused substantial shock - boundary-layer interaction. Reduction of the severity

of this interPction was achieved by redesigning the pod so that the wedge angle was less

than the shock detachment angle at the free-stream conditions tested; this resulted in the

i fluctuating pressure decrease.

Power spectral densities of tested configurations covering a frequency range of 0 to

10 000 cps are illustrated in figure 11. The data used for these plots were the pressure

' fluctuations measured by transducers 15, 16, 18, and 23, all at M0 = 2.0, and are rep-
resentative of all data analyzed. Transducers 15, 16, and 18 represent the most active

fluctuating pressure instrumentation. Transducer 23 was the least active transducer and

is included for reference purposes. The full-length model with the original pod experi-

enced the greatest power at all frequencies for all transducer data analyzed. This power

[ is at a maximum in the low-frequency range below 2000 cps with a peak value of 0.036

I pound per square foot squared per cps. The activity tapers off to almost negligible values

at 10 000 cps. The shortened model with the original pod illustrates a marked decrease

' in fluctuating pressure power level when compared with the full-length model. This is
i

particularly true at frequencies below 3000 cps. From 500 to 10 000 cps, the power

! spectral density of the shortened model did not exceed 0. 02 pound per square foot squared

per cps. The shortened model with the redesigned pod experienced extremely small pres-

. sure fluctuations, as evidenced by the minimal power spectra levels for this configuration
over the entire frequency range for all transducer data presented. The greatest amount

of fluctuating pressures occurred on the surfaces near the shoulder of the equipment pod.

Flight vehicle frequencies at which considerable power spectra levels were measured
!

have been related to model frequencies by the reduced frequency relation, which is

fm ffs\Din/W

Specific values of interest in this study at Mach 2.0 were full-scale frequencies of 600

and 900 cps and corresponding model frequencies of 5448 and 8172 cps, where the flight

and wind tunnel velocities were 1940 and 1762 feet per second, respectively. It is clear

from figure 11 that no predominant power spectra levels (high amp]it_ide, nm'row band-

10
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width) appeared consistently at either of these frequencies or group of frequencies. This

would indicate the possibility that high flight vibration levels at these frequencies may be

caused by pressure fluctuations that excite vehicle structures at their natural resonant

frequencies. Furthermore, it is felt that the 50 cps bandwidth resolution employed for

this 1/10-scale data (comparable to full-scale 5 cps bandwidth) precluded the possibility

that the spectrum analyzer averaged out any sharp peaks in pressure fluctuation. It is

also evident that the level of pressure fluctuation activity was dependent, to some extent,

on boundary-layer effects.

SUMMARYOFRESULTS

A 1/10-scale Atlas-Agena-Mariner C was wind tunnel tested over a Mach number

range of 2.0 to 2.5 at an angle of attack of 0°. Attention was centered on the fluctuating

pressure activity in the area of an equipment pod. Additional configurations tested were

a 1/10-scale model of the Atlas with a shortened nose and the original pod and the same

shortened model with a redesigned pod. The following results were obtained:

1. Power spectral densities of the three tested configurations failed to reveal distinct

power spectra levels at model frequencies corresponding to full-scale frequencies where

significant power concentrations had been observed. This raises the possibility that flight

structures are resonating to pressure fluctuations and producing peaks at their natural

resonant frequencies.

2. mock attachment and reduction of shock - boundary-layer interaction reduced the

values of the root-mean-square differential pressure coefficients. This was achieved by a

redesign oI the original pod in which the wedge angle was reduced and the pod lengthened.

3. The use of a short nose on the Atlas considerably reduced the fluctuating pressure

levels, possibly because of decreases in shock - boundary-layer interactions that were

caused by modifications of boundary-layer profile and thickness.

i 4. Transducers installed on surfaces in proximity to the equipment pod shoulder

measured the highest level of pressure fluctuations.
I

5. Much number had little effect on root-mean-square fluctuating pressure values in

i the Much number range of 2.0 to 2.5.

i

Lewis Research Center,

i National Aeronautics _,_d Space Administration,

j Cleveland, Ohio, May 19, 1966,
493-21-00-01-22.

I
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